2008 Linear Motion Question

1. (a) A ball is thrown vertically upwards with an initial velocity of $39.2 \mathrm{~m} / \mathrm{s}$.

Find (i) the time taken to reach the maximum height
(ii) the distance travelled in 5 seconds.
(b) Two particles P and Q, each having constant acceleration, are moving in the same direction along parallel lines. When P passes Q the speeds are $23 \mathrm{~m} / \mathrm{s}$ and $5.5 \mathrm{~m} / \mathrm{s}$, respectively. Two minutes later Q passes P, and Q is then moving at $65.5 \mathrm{~m} / \mathrm{s}$.

Find (i) the acceleration of P and the acceleration of Q
(ii) the speed of P when Q overtakes it
(iii) the distance P is ahead of Q when they are moving with equal speeds.

(i)

$$
\begin{array}{ll}
U=39.2 & V=u+a r \\
V=0 & O=39.2+(-98)(T) \\
a=-9.8 & 0=39.2-9.8 T \\
S=- & 9.8(T)=39.2 \\
T=? & T=\frac{39.2}{9.8}
\end{array}
$$

$$
T=4 \mathrm{sec}
$$

(i) In 5 sec THCC BALL HAS TNAVECLED 70 mAX. HECGHT AND FACLEN DOWN For / sce.

To max Helart:

$$
\begin{aligned}
& u=39.2 \\
& v=0 \\
& a=-9.8 \\
& S=? \\
& T=4
\end{aligned}
$$

$$
\begin{aligned}
& S=47+\frac{1}{2} a 7^{2} \\
& S=(39.2)(4)+\frac{1}{2}(-9.8)(4)^{2} \\
& S=156.8-78 \cdot 4 \\
& S=78.4 n
\end{aligned}
$$

From matx Heclultt dan ,er / sec:

$$
\begin{array}{ll}
u=0 & S=U T+\frac{1}{2} 47_{2} \\
v=- & S=O(1)+L_{2}(9.8)(1)^{2} \\
a=+4.8 & S=0+4.9 \\
S=? & S=4.9 m \\
T=1 &
\end{array}
$$

$$
\begin{aligned}
\therefore \text { Trac oistance } & =78.4+4.9 \\
& =83.3 \mathrm{~m}
\end{aligned}
$$

2 munutes
(i) Q

$$
\begin{array}{ll}
u=5.5 & v=u+a T \\
v=65.5 & 65.5=5.5+a(120) \\
a=? & 65.5-5.5=120 a \\
s=- & 60=120 a \\
T=120 & 0.5 \mathrm{~ms}^{-2}=a_{2}
\end{array}
$$

$$
v^{2}=u^{2}+2 a s
$$

$$
(65.5)^{2}=(5.5)^{2}+2(0.5)(5)
$$

$$
4290.25=30.25+S
$$

$4260 \mathrm{~m}=\mathrm{S}:$ Disr. WHEN ovartikina acmes

$$
\begin{array}{ll}
u=23 & S=u T+L_{2}^{2} \Delta T^{2} \\
v=- & 4260=23(120)+k_{2}(a)(120)^{2} \\
a=? & 4260=2760+7200 a \\
s=4260 & 1500=7200 a \\
T=120 & \frac{s}{24} \mathrm{~ms}^{-2}=a_{p}
\end{array}
$$

(ii) $S P \in \in D$ of P :

$$
\begin{aligned}
& v=u+a T \\
& v=23+\frac{5}{24}(120) \\
& v=23+5(5) \\
& v=48 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(ii) Fins tint when species Ane ceorl:
Q

$$
\begin{aligned}
& V=u+a 7 \\
& v=u+4 T \\
& V=5.5+(0.5)(T) \\
& V=23+\frac{5}{24} \\
& V=V \\
& 5.5+0.57=23+\frac{5}{24}(7)(\times 24) \\
& 132+127=552+57 \\
& 12 T-5 T=552-132 \\
& 7 T=420 \\
& T=60 \mathrm{x} .
\end{aligned}
$$

NO L find distance EACH HAS TNUELCCD N THE Tindal:
θ

$$
\begin{aligned}
& S=4 T+\frac{1}{2} a T^{2} \\
& S=5.5(60)+\frac{1}{2}(0.5)(60)^{2} \\
& S=330+900 \\
& S_{Q}=1230 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& S=47+\frac{L}{2} 97^{2} \\
& S=23(60)+\frac{L}{2}\left(\frac{s}{24}\right)(60)^{2} \\
& S=1380+\frac{5}{48}(3600) \\
& S=1755
\end{aligned}
$$

Dist. Between: $1755-1230=525 \mathrm{~m}$

